Comprehensive Analysis of Genomic Structural Variation

March 30th, 2022

Next Gen Omics Conference Boston Massachusetts

KromaTiD

Directional Genomic Hybridization

Map genomes, identify structural variation, and profile structural heterogeneity

To provide a complete structural genomic toolset, KromaTiD combines dGH with Pinpoint FISH (for non-dividing cells) and G-Banding (for orthogonal confirmation)

dGH[™]: Single Cell Measurements of Many Cells

Inversion and Unbalanced Translocation

Whole Genome Map

10Kb Inversion between edits Edits and Integrations

Adding an Orientation Dimension to Image Data

Double Stranded Metaphase Chromatid Analyte: Single Stranded dGH Chromatid

Pink = Fluorescently Labeled

dGH chromosomes contain 2 strands of oppositely oriented, Parental DNA only— **NO Daughter Strands**

Single-stranded probes are designed to target only the Watson strand and only unique sequences

Case Study: Undirected DNA Damage

Ionizing Radiation-induced DNA Damage (dGH) 0.25 Inversions Translocations 0.20 per 0.15 **0** 0.10 0.05 0.00 Pre-fliaht Post-fliaht Pre-fliaht Fliaht Post-fliaht - Control -Control

Increased rearrangements during spaceflight consistent with reported radiation doses

Inversions remain elevated, suggestive of ongoing instability damage to stem cells, clonal hematopoiesis.

- 1. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight (science.org)
- 2. Scientists Share Results From NASA's Twins Study : NPR

Case Study: Estimating Baseline Structural Variation

Figure 1: Whole chromosome 1, 2 and 3 paints hybridized to a metaphase spread from a human peripheral blood sample irradiated with 2Gy Cs-137 gamma rays. Structural rearrangements identified by Directional Genomic Hybridization denoted by arrows.

SVs in human blood-derived lymphocytes

Figure 2: Blood samples from young adult controls were irradiated with Cs-137 gamma rays to establish a dose response (calibration) curve. Males in their mid-20's were selected to account for age at exposure. Inversions (red) had a higher natural background rate compared to translocations (blue); however, inversions formed at a higher rate per unit dose.

Case Study: Estimating Baseline Structural Variation

SVs in human blood-derived lymphocytes

~0.5 aberrations per cell equivalent. Unexposed adult non-smokers. Average age 26yr

Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans - PubMed (nih.gov)

Case Study: Two Concurrent Edits of the P53 Gene Loci

Measuring and Monitoring CRISPR-Cas9 Off-Target Effects with Directional Genomic Hybridization[™] (dGH[™]) Authors: Erin Cross, Molishree Joshi, Stephen Hughes

Case Study: Characterization of Integration Events

Yellow = Off-Target Insert

Yellow + Green = On -Target Insert

Green = Target Site

Pink = Screen Paint

Case Study: Characterization of Integration Events

Yellow = Off-Target Insert

Yellow + Green = On -Target Insert

Green = Target Site

Pink = Screen Paint

Average Integrations per cell : 7.8

- On-target only: 2%
- On-target plus off-target: 14%
- Off-target only: 77%
- None: 7%

Case Study: Characterization of Integration Events

Case Study: Whole Genome Mapping

Metaphase Spread

Case Study: Whole Genome Mapping

Case Study: Un-Sequenceable Rearrangements

Case Study: Un-Sequenceable Rearrangements

WG Analysis for the NIST Genome Editing Consortium

Whole genome dGH analysis of the "Genome in a Bottle" progenitor cell line in preparation for engineering of large variant controls by NIST partners

GM2	438	5			LCL fro	om B-Lymphocyt	e
Description: Affected: Sex: Age:		PERSONAL GENOME PROJECT Unknown Male 45 YR (At Sampling)					Ø
verview C	haracter	zations P	henotypic Data	Publications	Culture Protocols		e
Remark	Particip Blue ru heman from Lu cell); fa	oant (huAA bber bleb gioma; mi CL) and GM ther is GM	53E0) in the Per nevus syndrom graine with aura /127730 (stem ce 124149 (Lymph).	rsonal Genom e; central sero a; narcolepsy; ell from PBMC	e Project: http://www ous chorioretinopathy sleep paralysis; same); mother is GM24143	y.personalgenomes.org history o y; cystoid macular degeneration; s subject as GM26105 (stem cell 3 (Lymph) and GM26077 (stem	f

Previous GM24385 Genome Structural Characterization:

- Karyotyping (Coriell):
 - primarily diploid
 - Potential inversion on 3q26.3q29
- Sequencing (GiaB Consortium):
 - Numerous large CNVs
 - No inversion or translocation variant calls
- Whole chromosome dGH on C3
 - Confirmed inversion on 3q26.3q29
 - Discovered telemeric inversion on 3q
 - Discovered centromeric inversion on 3q

Case Study: Cell Line Stability

Some rate of potential intra-chromosomal CNV (band expansions) was observed

Instability and gross rearrangement of C16 matched dGH SCREEN observations

<u>GM24385 (coriell.org)</u> <u>National Institute of Standards & Technology (nist.gov)</u>

Case Study: Cell Line Stability

•

Chr 16q Inversion (37%)

- small, mid-arm
- Observed in 19% of cells

Chr 16p Inversion

- small, mid-arm
- Observed in 19% of cells

Chromosome 16 translocations (~4%)

- Non-reciprocal, balanced and unbalanced
- Partners Chr7 and Chr10

Whole arm deletion Observed in 11% of cells

Observed in 4% of cells

radial association

Decondensed/ elongated centromeres and isochromosomes

Observed in 22% of cells

Chromosome 16 Complex Structural Variation in p18 indicates transformation and instability of cell line

Recurrent Inversions: Location, size, and prevalence

Chr 3q Inversion (7%)

• large, telomeric

Confirmation of p0 G-Banding Result and p3 dGH Results (2014)

Chr 3q Inversion 2 (26%)

• Small, mid-arm

Confirmation of p3 dGH Results (2014)

Chr 3q Inversion 3 (13%)

• Small, telomeric

Confirmation of p3 dGH Results (2014)

Chr Xq Inversion (67%)Small, telomeric

Newly Discovered

Newly Discovered

Chr 8p Inversion (52%)Mid-size, mid-arm

Newly Discovered

13.3 13.2 13.1 12 12

19

Chr 12p Inversion (26%) Mid-sized, centromeric

Newly Discovered

Chr 12p Inversion 2 (30%)

• small, telomeric

Newly Discovered

Inversion 1 Inversion 2 Inversion 3

Chromosome

3

25 26.1

Case Study: Cell Line Stability

S73_c54, Cell 14 Passage 18

Conclusions

- Expanding number of differing variations from Passage 12 to 18 indicating instability and differentiation
- No consistency of subpopulations

Structural Variant Summary

- 4 Heterogenous translocations
- 34 Heterogenous inversions
- 18% variable monosomy
- 4% variable trisomy
- Low level of Chromothrypsis of C19complex events

<u>GM24385 (coriell.org)</u>, NIST GM24385 Reference Material Certificate <u>National Institute of Standards & Technology (nist.gov)</u>

Goal: Measure Any Variation in a Genome

Hybridization Mapping

Directional Genomic Hybridization

Map genomes, identify structural variation, and profile structural heterogeneity

To provide a complete structural genomic toolset, KromaTiD combines dGH with Pinpoint FISH (for non-dividing cells) and G-Banding (for orthogonal confirmation)

Comprehensive Analysis of Genomic Structural Variation

For further information, please contact

Christopher Tompkins Chief Technical Officer ctompkins@kromatid.com

From Sample to Target

dGH SCREEN™ (Unbiased) **dGH DSCVR™** (Unbiased) **dGH In-Site™** (Localized)

