Directional Genomic Hybridization for Cellular Engineering Applications

Presented to:

NextGen Omics 2020

Visualizing Genomic Structure with dGH™

Focus on the Edit Site

The Whole Genome

Three Inversions and Two Missing Chromosomes

Direct Structural Measurements -- Definitive Process Outcomes

A Comprehensive Genomic Picture Requires dGH

Mis-repairs: Faulty Repair

Structural Variant

Mis-edits: Accurate Repair: Faulty Edit

Single Nucleotide Variant

dGH is Direct Visualization

Direct measurement of simple, complex and heterogenous structural variation

Sequencing uses pooled DNA

Measuring all editing outcomes & risks requires only two orthogonal and complementary methods

Genomic Structure on a Genome Wide Scale

Hybridization Mapping

Chromosome Staining

A Robust Method

dGH chromosomes contain 2 strands of oppositely oriented, Parental DNA only—NO Daughter Strands

Single-stranded probes are designed to **target** *only* **one strand** and *only* unique sequences

- 1. Grow cells through one cell cycle
- 2. Incorporate analog during replication
- 3. Strip daughter strands
- *4. Hybridize with proprietary single stranded probes*
- 5. Image and analyze

Using dGH in a Cellular Engineering Workflow

Comprehensive genomic structural measurements throughout therapy development

Mapping Edit Site Structural Variation

Two concurrent edits to a single chromosome lead to four or more double-strand breaks and a high probability of mis-repair

Desired Edit Site Structure

- Sub-telomeric probe
- Bracketing probes
- Inter-edit sequence (10kB)
- Bracketing probes

Deleted Edit Site Structure

Inverted Edit Site

- Sub-telomeric probe
- Bracketing probes
 Inter-Edit sequence (10kB)
- Bracketing probes

Multiple mis-repairs lead to cells with multiple variants and a complex, heterogeneous batch

Confidential

Measuring Complex Variants Arising from a Double Edit

60

Detailed Variant Profile

N=50	Control	Edited
Target deleted, one homolog	0%	32%
Target deleted, both homologs	0%	6%
Target inverted, one homolog	4%	12%
Target inverted, both homologs	0%	4%
Other inversion or SCE one homolog	12%	22%
Other inversion or SCE both homologs	8%	16%
Target inverted plus other inversion	0%	4%

Confidential

Single Cell Evaluation of Insertion Quality

Chromosome 22

Green Probes define the target site. Yellow signal indicates an on-target insertion

Chromosome 1, 2 and 3 Full chromatid paints to measure rates of random variation and

unexpected DNA damage

Other Chromosomes Off target inserts show as yellow signal

Ch 1, 2, 3

dGH In-Site[™] measures quantitative insertion success and quality

dGH SCREEN™ measures DNA damage, instability and repair activity **concurrently**

48% of cells had at least one on-target insertion

Cells with inserts present at:

- 2 Homolog: **7%**
- 1 Homolog: **41%**
- 0 Homolog: **52%**

8.3% of on-target inserts were inverted and 1 Translocation of the target site was observed

Yellow and green fluorescence channels overlaid without DAPI demonstrate presence of insert at target site

But, Off-Target Insertion was Common

Off-target chromosomes in 100 pink channel N=2155 Off-Target Inserts Cells 80 Number of Edited 60 Inserts visible in 40 yellow channel 20 0 . 0 1-10 11-20 21-30 31 +

Off-Target Integration Events Per Cell

Number of Off-Target Integration Events

Target sites visible in green channel

Correlating signal size with insert copy number

dGH SCREEN: WG, Single Cell Structural Variant Measurement

Ref: Immortalized Leukemia B-Cells https://www.coriell.org/1/NIGMS/Collections/NIST-Reference-Materials

Unbiased Measurements - 3 Kb LLOD – Highest Res Karyotyping

Whole Genome, Single Cell Structural Variation: GM Data

DNA Repair Activity (SCEs)

Hi-Res Structural Mapping

n = 25	Rate
Aneuploidy	40% of cells were aneuploid; monosomy of Chr14 observed in 25% of cells
Random Variants (<3kb)	Not observed
Variants Identified (<3Kb)	Not observed
Degree of Mosaicism	25% for c14 Monosomy
SCE Range: X to Y STD	2.6 ± 1.5

Ref: Immortalized Leukemia B-Cells https://www.coriell.org/1/NIGMS/Collections/NIST-Reference-Materials

C14 mosaicism; Normal B-Cell repair activity, random aneuploidy; no structural variants

Discovering Variants in Rare Disease Patients

Using dGH SCREEN KromaTiD discovers 7 previously unidentified inversions and confirms 1 expected inversion

Inversion on CX

GM24385					LCL from B-Lymphocyte		
Description: F		PERSC	PERSONAL GENOME PROJECT		0		
Affected: C		Unkno	Unknown				
Sex: F		Male	Male				
Age: 2		45 YR	45 YR (At Sampling)				
Overview	Character	izations	Phenotypic Data	Publications	Culture Protocols		0
Remar	·k Particip	oant (huA	A53E0) in the Per	rsonal Genom	e Project: http://w	ww.personalgenomes.org history	of
	Blue ru	Ibber ble	b nevus syndrom	e; central ser	ous chorioretinopa	athy; cystoid macular degeneration	n;

Participant (huAA53E0) in the Personal Genome Project: http://www.personalgenomes.org history of Blue rubber bleb nevus syndrome; central serous chorioretinopathy; cystoid macular degeneration; hemangioma; migraine with aura; narcolepsy; sleep paralysis; same subject as GM26105 (stem cell from LCL) and GM27730 (stem cell from PBMC); mother is GM24143 (Lymph) and GM26077 (stem cell); father is GM24149 (Lymph).

Indications of other rearrangements and genomic instability were also observed

KromaTiD Genomic Structural Products & Services

Product	Samples	Analyte	Applications	Status
Pinpoint FISH™	Blood, Cell, Tissues	Interphase cells or FISH prepped metaphase chromosomes	Insert Tracking and Edit Site Profiling for non-dividing cells and tissues	Launched 2015
dGH In-Site™	Blood or Cells	dGH prepped metaphase chromosomes	Insert Tracking and Edit Site Profiling	Launched 2020
dGH SCREEN™	Blood or Cells	dGH or FISH prepped metaphase chromosomes	Unbiased, De Novo Genomic Structural Mapping . Single chromosome through whole genome; Hi-Res Karyotyping	Launching 2020
dGH DSCVR™	Blood or Cells	dGH prepped metaphase chromosomes	De Novo Structural Variant Identification. Hi-Res Karyotyping	Launching 2021
dGH Research Solutions™	Blood, Cell, Tissues	Interphase cells, dGH or FISH prepped metaphase chromosomes	Structural Editing Outcomes . DNA damage, instability and variability	Launched 2015
dGH Custom Solutions™	Blood, Cell, Tissues	Interphase cells, dGH or FISH prepped metaphase chromosomes	Structural Editing Outcomes . DNA damage, instability and variability	Launched 2016
dGH GLP Solutions™	Blood, Cell, Tissues	Interphase cells, dGH or FISH prepped metaphase chromosomes	GLP dGH and PPF analysis for research and preclinical studies	Launching 2020
dGH Discovery Solutions™	Blood, Cell, Tissues	Interphase cells, dGH or FISH prepped metaphase chromosomes	Screening, Discovery and Identification of disease driving structural variants	Launching 2021

Thank You..

For more information:

Scientific contact:

Christopher Tompkins, PhD CEO & CTO <u>ctompkins@kromatid.com</u>

Commercial contact:

David P Sebesta, PhD Chief Commercial Officer david.sebesta@kromatid.com

For additional information, please visit our virtual booth or www.kromatid.com

